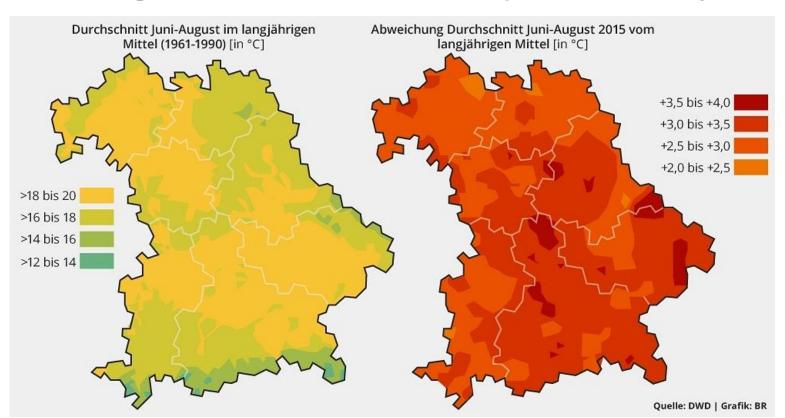


von Kulturpflanzen an den Klimawandel

Projektverbund Strategien zur Anpassung von Kulturpflanzen an den Klimawandel Projektpräsentation


Hitzetoleranz bei der Pollenentwicklung von Mais und Weizen

Prof. Dr. Thomas Dresselhaus

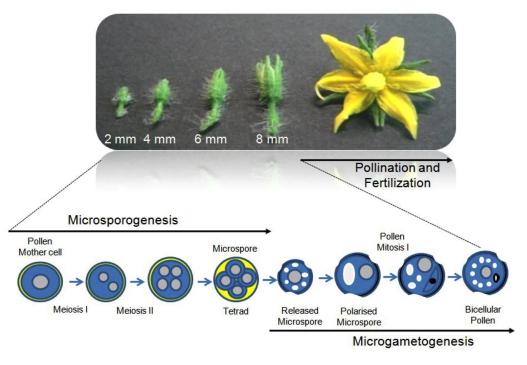
Universität Regensburg Lehrstuhl für Zellbiologie und Pflanzenbiochemie

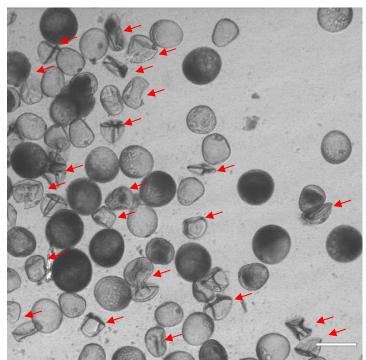
Erhöhung der durchschnittlichen Temperaturen in Bayern

Folgen: Sterilität bei Kultur- und Wildpflanzen



Maisfeld bei Regensburg im Sommer 2015




Rapsfeld (Quelle: wa.gov.au)

<u>Ursachen</u>: insbesondere kurze Hochtemperaturepisoden (KHTs)

<u>Ursachen</u>: Pollenentwicklung sensitiv für KHTs

Tomate (Quelle: Giorno et al. 2013 *Plants*)

Mais: 3 Tage 35°C

Ziele des Forschungsvorhabens

➤ Identifizierung der kritischen KHT-Phasen (Mais / Weizen)

Identifizierung von KHT-korrelierten Genen bzw. molekularen Mechanismen der Pollenentwicklung (sensitive/tolerante Linien)

➤ Langfristig Selektion Hitzestress-toleranter Nutzpflanzen

<u>Lösungsansatz</u>

 Durchführung verschiedener KHT-Regimes, Identifizierung der kritischen Stadien, physiologische Untersuchungen

Probensampling, RNAseq und bioinformatische Analysen
(Identifizierung von Kandidaten-Genen / Pathways)

Analyse von Kandidaten "KHT-Genen" durch Genomeditierung im Gewächshaus

von Kulturpflanzen an den Klimawandel

Projektverbund Strategien zur Anpassung von Kulturpflanzen an den Klimawandel Projektpräsentation

Hitzetoleranz bei der Pollenentwicklung von Mais und Weizen

Prof. Dr. Thomas Dresselhaus

Universität Regensburg Lehrstuhl für Zellbiologie und Pflanzenbiochemie

